Home » Frequently Asked Questions (FAQ) » How can we tell when descriptions of quantum mechanics are woo-woo and not scientific?

How can we tell when descriptions of quantum mechanics are woo-woo and not scientific?

[This article is under construction.]

Currently, there are over 20 theoretical interpretations of quantum physics. They mostly SOUND like woo. For example, the Many Worlds Interpretation proposes that innumerable universes are created by quantum events. The de Broglie-Bohmian Interpretation proposes that every event is connected with every other event in the universe, thus explaining the well-accepted phenomenon of quantum entanglement.

Serious physicists propose these kind of hypotheses and work on math regarding them. These are the easiest ones to describe—other interpretations are just as weird when you get down into the details. And I’m including the Copenhagen (orthodox) Interpretation as being weird because it proposes that quantum objects are not real and physical until they interact with another object. That’s a major reason that Einstein challenged it for decades, saying, “I like to think the moon is there even if I’m not looking at it.”

“Weird” here does not mean flaky, woo-woo, or wrong. It simply means unfamiliar to us who live in the world of chairs and tables and who don’t deal with electrons and photons on a daily basis.

It is easy to attack people who rely on quantum physics for some of their far-out philosophies. But when quantum physicists, themselves, propose Many Worlds or universal connectedness, one wonders who is calling the kettle black.

So, bottom line, I don’t think there is a way to distinguish between woo-woo and serious physics without a good background in quantum physics. Not yet. Quantum physics is currently an anarchy of interpretations, with each physicist supporting their own preferred view. This is not a good time to mock someone else’s interpretation or even a philosophy based on an interpretation that one isn’t familiar with.

Quantum physics is a mathematical theory that can be verified by experiment. Some might leap to the conclusion that someone talking about quantum physics is talking woo if he/she isn’t writing equations on the board. However, many popularizers of quantum physics spare their lay audiences the equations and are at the same time respected physicists. These include Brian Greene, James al Khalili, and Stephen Hawking.

While a lot of the math of quantum physics is understood by physicists and a lot of experiments have been done, there is a great deal more to know about both. This is an evolving science; more is being learned every day. In such a situation, it is premature to say that we understand what can be said legitimately about quantum physics and what is woo.

Theoretical quantum physicists do math and attempt to interpret the math and the experimental results so that they can envision new experiments. This has been the role of important physicists like Einstein and John Bell. Theoretical interpretations allow quantum physics to progress just as experiments do.

So, bottom line, I don’t think there is a way to distinguish between woo and serious physics without a heavy background in math and physics. Not yet. Quantum physics is currently an anarchy of interpretations, with each physicist either turning away from any interpretation at all or supporting their own preferred view. This is not a good time to make fun of someone else’s interpretation or of a philosophy based on an interpretation that one isn’t familiar with and, therefore, one supposes could not possibly have scientific support. It’s always good to keep in mind those who mocked and vilely threatened poor souls like Galileo who believed outlandish theories like the earth travels around the sun.

However, it’s an exciting time to try to understand as much as possible of the math, experimental results, and theoretical interpretations. With enough study, one can begin to draw one’s own conclusions about what is woo and what has theoretical, mathematical, and experimental support.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.